Review for Exam II , MTH 221 , Fall 2010

Ayman Badawi

QUESTION 1. Are $(2,1),(-1,4),(6,9)$ independent in R^{2} ? Explain
QUESTION 2. Let $F=\operatorname{span}\{(1,1,-1,-1),(1,-1,2,0),(5,-1,4,-2)\}$. Find $\operatorname{dim}(F)$. Find a basis B for F.
Is $(4,0,1,-1) \in F$? explain. Is $a=(3,-1,3,-1) \in F$? explain. If yes, then write a as a linear combination of the elements in B.

QUESTION 3. Let $D=\operatorname{span}\left\{x^{2}+3 x-1,-2 x^{2}, x^{2}+x+1\right\}$. Find $\operatorname{dim}(D)$. Find a basis B for D. Is $a=5 x+12 \in$ D ? explain. If yes, then write a as a linear combination of the elements in B.

QUESTION 4. Form a basis B for P_{5} such that B containing the two elements $4 x^{4}, x^{4}+x$ and each element in B is of degree 4 .
QUESTION 5. Let $M=\operatorname{span}\left\{\left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ 0 & 0.5\end{array}\right],\left[\begin{array}{cc}5 & -3 \\ 0 & 2.5\end{array}\right]\right\}$. Find $\operatorname{dim}(M)$. Find a basis B for M. Is $A=$ $\left[\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right] \in M$? explain. If yes, then write A as a linear combination of the elements in B.

QUESTION 6. Let $A=\left[\begin{array}{ccccc}-1 & 1 & -1 & 1 & 2 \\ 1 & -1 & 2 & -1 & -2 \\ -3 & 3 & -2 & -3 & -6\end{array}\right]$ Find a basis for $N(A)$, basis for $\operatorname{Col}(A)$, and basis for $\operatorname{Row}(A)$.
QUESTION 7. Let $B=\{(1,1,1,1),(-2,-1,2,1)\}$ be a basis of a vector space F. Describe F. Where does F "live"?. Given $v \in F$. Prove that there are unique numbers a, b such that $v=a(1,1,1,1)+b(-2,-1,2,1)$.

QUESTION 8. Let $F=\left\{\left.\left[\begin{array}{cc}3 a & 2 b \\ 2 a-b & 0\end{array}\right] \right\rvert\, a, b \in R\right\}$. Is F a subspace of $R_{2 \times 2}$? If yes, then (i) Find a basis for F and
(ii) Write F as a span.

QUESTION 9. Let $F=\left\{3 a+2 b x+(a-b) x^{2} \mid a, b \in R\right\}$. Is F a subspace of P_{3} ? If yes, then (i) Find a basis for F and (ii) Write F as a span.

QUESTION 10. Let $F=\left\{\left.\left[\begin{array}{cc}3 a & 2 b \\ 2 a-b & 1\end{array}\right] \right\rvert\, a, b \in R\right\}$. Show that F is not a subspace of $R_{2 \times 2}$.
QUESTION 11. Let $F=\left\{3 a+2 b x+(a-b+2) x^{2} \mid a, b \in R\right\}$. Show that F is not a subspace of P_{3}.
QUESTION 12. Let $F=\{(a, b, c, d) \mid a, b, c, d \in R$ and $2 a-b+d=0\}$. Show that F is a subspace of R^{4}. Find a basis for F. Write F as SPAN.

QUESTION 13. Let F, M be subspaces of R^{10} such that neither $F \subseteq M$ nor $M \subseteq F$. Prove that $F \cup M$ is never a subspace of R^{10}. Note that it is true that if M and F are subspaces of a vector space V , then $M \cap F$ is a subspace of V.

QUESTION 14. Let $F=\{(a, b, c, d) \mid a+2 b+c+d=0\}$ and $M=\{(a, b, c, d) \mid-a-b-c+d=0\}$. LET $K=M \cap F$. Then K is a subspace of R^{4}. Find a basis for K. Write K as a span.

QUESTION 15. Let $T: P_{3} \longrightarrow R$ be a linear transformation such that $T(p(x))=\int_{0}^{1} p(x) d x$. Find the standard matrix representation of T. Find $\operatorname{Ker}(T)$. Write $\operatorname{Ker}(T)$ as a SPAN.

QUESTION 16. Let $T: P_{3} \longrightarrow R^{3}$ such that $T(1)=(2,2,2), T(3 x+6)=(-1,0,3)$, and $T\left(x^{2}\right)=(1,2,5)$. Find the standard matrix representation of T. Find a basis for $\operatorname{Ker}(T)$ and a basis for Range(T)

QUESTION 17. Let $T: P_{3} \longrightarrow R^{3}$ such that $T(f(x))=(f(0), f(1), f(2))$.
(i) Show that T is a linear transformation. Then find the standard matrix representation of T.
(ii) Find basis for $\operatorname{Ker}(\mathrm{T})$ and basis for Range(T). Write $\operatorname{Ker}(\mathrm{T})$ and Range(T) as span.
(iii) Show that T is 1-1 and onto (isomorphism), and then define T^{-1}

QUESTION 18. Let $T: P_{4} \longrightarrow R_{2 \times 2}$ such that $T(f(x))=\left[\begin{array}{cc}f(1) & f(-1) \\ 0 & f(1)\end{array}\right]$
(i) Show that T is a linear transformation.
(ii) Find the standard matrix representation of T.
(iii) Find basis for $\operatorname{Ker}(\mathrm{T})$ and basis for Range(T). Write $\operatorname{Ker}(\mathrm{T})$ and Range(T) as span.
(iv) Is T 1-1 ? Explain

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

