Linear Algebra MTH 221 Fall 2010, 1-2

Review for Exam II, MTH 221, Fall 2010

Ayman Badawi

QUESTION 1. Are (2, 1), (-1, 4), (6, 9) independent in \mathbb{R}^2 ? Explain

QUESTION 2. Let $F = span\{(1, 1, -1, -1), (1, -1, 2, 0), (5, -1, 4, -2)\}$. Find dim(F). Find a basis B for F. Is $(4,0,1,-1) \in F$? explain. Is $a = (3,-1,3,-1) \in F$? explain. If yes, then write a as a linear combination of the elements in B.

QUESTION 3. Let $D = span\{x^2+3x-1, -2x^2, x^2+x+1\}$. Find dim(D). Find a basis B for D. Is $a = 5x+12 \in D$? explain. If yes, then write a as a linear combination of the elements in B.

QUESTION 4. Form a basis B for P_5 such that B containing the two elements $4x^4$, $x^4 + x$ and each element in B is of degree 4.

QUESTION 5. Let $M = span\{\begin{bmatrix} 2 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 0.5 \end{bmatrix}, \begin{bmatrix} 5 & -3 \\ 0 & 2.5 \end{bmatrix}\}$. Find dim(M). Find a basis B for M. Is A =

 $\begin{vmatrix} -2 & 0 \\ 0 & -1 \end{vmatrix} \in M$? explain. If yes, then write A as a linear combination of the elements in B.

QUESTION 6. Let $A = \begin{vmatrix} -1 & 1 & -1 & 1 & 2 \\ 1 & -1 & 2 & -1 & -2 \\ -3 & 3 & -2 & -3 & -6 \end{vmatrix}$ Find a basis for N(A), basis for Col(A), and basis for Row(A).

QUESTION 7. Let $B = \{(1,1,1,1), (-2,-1,2,1)\}$ be a basis of a vector space F. Describe F. Where does F "live"?. Given $v \in F$. Prove that there are unique numbers a, b such that v = a(1, 1, 1, 1) + b(-2, -1, 2, 1).

QUESTION 8. Let $F = \{ \begin{bmatrix} 3a & 2b \\ 2a-b & 0 \end{bmatrix} \mid a, b \in R \}$. Is F a subspace of $R_{2\times 2}$? If yes, then (i) Find a basis for F and

(ii) Write F as a span.

QUESTION 9. Let $F = \{3a + 2bx + (a - b)x^2 \mid a, b \in R\}$. Is F a subspace of P_3 ? If yes, then (i) Find a basis for F and (ii) Write F as a span.

QUESTION 10. Let $F = \{ \begin{bmatrix} 3a & 2b \\ 2a-b & 1 \end{bmatrix} \mid a, b \in R \}$. Show that F is not a subspace of $R_{2\times 2}$.

QUESTION 11. Let $F = \{3a + 2bx + (a - b + 2)x^2 \mid a, b \in R\}$. Show that F is not a subspace of P_3 .

QUESTION 12. Let $F = \{(a, b, c, d) \mid a, b, c, d \in R \text{ and } 2a - b + d = 0\}$. Show that F is a subspace of R^4 . Find a basis for F. Write F as SPAN.

QUESTION 13. Let F, M be subspaces of R^{10} such that neither $F \subseteq M$ nor $M \subseteq F$. Prove that $F \cup M$ is never a subspace of R^{10} . Note that it is true that if M and F are subspaces of a vector space V, then $M \cap F$ is a subspace of V.

QUESTION 14. Let $F = \{(a, b, c, d) \mid a + 2b + c + d = 0\}$ and $M = \{(a, b, c, d) \mid -a - b - c + d = 0\}$. LET $K = M \cap F$. Then K is a subspace of R^4 . Find a basis for K. Write K as a span.

QUESTION 15. Let $T: P_3 \longrightarrow R$ be a linear transformation such that $T(p(x)) = \int_0^1 p(x) dx$. Find the standard matrix representation of T. Find Ker(T). Write Ker(T) as a SPAN.

QUESTION 16. Let $T: P_3 \longrightarrow R^3$ such that T(1) = (2, 2, 2), T(3x + 6) = (-1, 0, 3), and $T(x^2) = (1, 2, 5)$. Find the standard matrix representation of T. Find a basis for Ker(T) and a basis for Range(T)

QUESTION 17. Let $T : P_3 \longrightarrow R^3$ such that T(f(x)) = (f(0), f(1), f(2)).

- (i) Show that T is a linear transformation. Then find the standard matrix representation of T.
- (ii) Find basis for Ker(T) and basis for Range(T). Write Ker(T) and Range(T) as span.
- (iii) Show that T is 1-1 and onto (isomorphism), and then define T^{-1}

QUESTION 18. Let $T: P_4 \longrightarrow R_{2\times 2}$ such that $T(f(x)) = \begin{bmatrix} f(1) & f(-1) \\ 0 & f(1) \end{bmatrix}$

- (i) Show that T is a linear transformation.
- (ii) Find the standard matrix representation of T.
- (iii) Find basis for Ker(T) and basis for Range(T). Write Ker(T) and Range(T) as span.
- (iv) Is T 1-1 ? Explain

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com